

Generators, Light Towers, Compressors, and Heaters

Used Compressors Hawaii - Power is transferred into potential energy and stored as pressurized air inside of an air compressor. These machines rely on gasoline, diesel or electric motors to force air into a special storage tank, subsequently increasing the pressure. Eventually, the tank reaches its limit and the air compressor turns off, holding the air in the tank until it can be used. There are many applications that require compressed air. The tank depressurizes as the kinetic energy of the air is used. After the lower limit has been attained, the air compressor roars back to life to begin the process of pressurization.

Positive Displacement Air Compressors There are multiple methods for air compression. These methods are divided into positive-displacement or roto-dynamic categories. The air is forced into a chamber with decreased volume in the positive-displacement model and this is how the air becomes compressed. Once the ultimate pressure is found, a port or valve opens to discharge the air from the compression chamber into the outlet system. There are different kinds of positive-displacement compressors including Vane Compressors, Piston-Type and Rotary Screw Compressors.

Dynamic Displacement Air Compressors The dynamic air compressors consist of centrifugal air compressors and axial compressors. Pressure energy is transformed via discharged kinetic energy with a rotating component. Pressurization is attained from a spinning impeller that creates centrifugal force to accelerate and decelerate contained air. Air compressors generate heat and require a method for heat disposal; usually with some type of air cooling or water. Compressor cooling also relies on atmospheric changes. Certain equipment factors need to be considered including the available compressor power, inlet temperature, ambient temperature and the location of the application.

Air Compressor Applications Numerous industries rely on air compressors. Supplying clean air with moderate pressure to a submerged diver is one use. Providing clean air with high-pressurization to fill gas cylinders to supply pneumatic HVAC controls and powering items such as jackhammers or filling vehicle tires are other popular uses. There are many industrial applications that rely on moderate air pressure.

Types of Air Compressors Most air compressors are the reciprocating piston style, the rotary vane model or the rotary screw kind. These types of air compressors are favored for portable and smaller applications.

Air Compressor Pumps Two of the main kinds of air-compressor pumps include oil-injected and oil-less kinds. The oil-free system relies on more technical components; however, it lasts for less time in comparison to oil-lubed pumps and is more expensive. The system that functions without oil has been recognized with delivering better quality.

Power Sources There are numerous power sources that are compatible with air compressors. The most popular models are diesel-powered, gas and electric air compressors. Additional models are available on the market that have been built to use hydraulic ports or engines that are commonly utilized by mobile units and rely on power-take-off. Isolated work sites with limited electricity commonly use diesel and gas-powered machines. These models are quite loud and require proper ventilation for their exhaust.

Electric-powered air compressors are common in workshops, garages, production facilities and warehouses where electricity is abundant.

Rotary-Screw Compressor The rotary-screw compressor is one of the most popular kinds on the market. A rotary-type, positive-displacement mechanism is what this type of gas compressor relies on. These compressors are often used in industrial applications in place of piston compressors. They are popular for jobs that depend on high-pressure air. Impact wrenches and high-power air tools are common. Gas compression of a rotary-screw compressor offers a sweeping motion. This creates less pulsation compared to piston model compressors which can result in a less productive flow. Rotors are used by the rotary-screw compressors to make gas compression possible. There are timing gears affixed on the dry-running rotary-screw compressors. These components are important to ensure the female and male rotors operate perfectly aligned. In oil-flooded rotary-screw compressors, the space between the rotors is lubricated. This serves as a hydraulic seal while simultaneously transferring mechanical energy between the rotors. Entering at the suction portion, gas travels through the threads while the screws rotate; forcing the gas to pass through the

compressor and exit through the screws ends. Effectiveness and success are obtained when certain clearances are achieved with the sealing chamber of the helical rotors, the rotors and the compression cavities. Rotation at high speeds minimizes the ratio of a leaky flow rate versus an effective flow rate. Many applications including food processing plants, automated manufacturing facilities and other industrial job sites rely on rotary-screw compressors. Other than fixed models, there are mobile units in tow behind trailers that run on diesel engines. Also known as “construction compressors,” portable compression systems are popular for sandblasting, industrial paint systems, construction crews, pneumatic pumps, riveting tools and more. Scroll Compressor A scroll compressor is used to compress refrigerant. It is common in vacuum pumps, to supercharge vehicles and in air conditioning equipment. Scroll compressors are used in many automotive air-conditioning units, residential heat pumps and air-conditioning systems to replace wobble-plate traditional and reciprocating rotary compressors. This machine has dual inter-leaving scrolls that complete the pumping, compressing and pressurizing fluids such as liquids and gases. Usually, one of the scrolls is fixed, while the second scroll is capable of orbiting with zero rotation. This action traps and pumps or compresses fluid between the two scrolls. Compression motion may be achieved by co-rotating the scrolls synchronously with their centers of rotation offset to create a similar motion to orbiting. Flexible tubing variations contain the Archimedean spiral that operates similar to a tube of toothpaste and acts like a peristaltic pump. There is a lubricant on the casings to stop exterior pump abrasion. The lubricant diverts heat. Since there are no moving parts coming into contact with the fluid, this pump is an affordable option. The lack of glands, seals and valves keeps them simple to operate and fairly inexpensive in terms of maintenance. Compared to many other pump models, this tube or hose feature is relatively low cost.